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Abstract 

Well known functions for describing reaction models are reconsidered by taking the 
fractal nature of powder into account. The functions need not be confined only to those 
derived by assuming reactions on regularly shaped models such as disks, cylinders, etc. 
Three types of reaction model function, based on a more physically meaningful picture, are 
provided. 

INTRODUCTION 

Reaction mechanisms, at least in the field of thermal analysis, seem to be 
well established, and various types of functions describing such mechanisms 
have been proposed (see, for example, Sharp et al. [l]). Our previous 
reports on the fractal nature of powder inclusive of an energy law for size 
reduction [2] and thermal decomposition [3-51 suggest that the reaction 
rate of a solid subjected to a mechanical size reduction is a function of the 
surface fractal dimension D which relates the specific surface area of a 
powder S, to the statistical fractal particle size x by the power scaling law 
S ,x~-~ [4,6]. Th e power D then becomes a material-dependent value, 
provided that the powder system under consideration is obtained by 
grinding for a sufficiently long time. Such a powder can be described by a 
characteristic particle size x,(t), which is a function of grinding hours t, and 
an undersieve particle size distribution function P(X, t). This particle size 
distribution also obeys a power law P(X, t) a Xp, where X is the particle 
size x scaled with xc(t). We have concluded until now that the input energy 
for the size reduction of a solid is used mainly for the formation of a fractal 
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surface with fractal dimension D [7], and that in the case of thermal 
decomposition, the rate thereof is also a function of D [6]. 

This function for the reaction rate, which we here denote by da/dt 
(where (Y is the degree of conversion) was found, at least in thermal 
analysis, not to obey the simple relation da/dt aXD-3 a S [6]. In other 
words, the reaction rate is not similar to that of a homogeneous reaction. 
The fact that the decomposition rate does not change significantly with 30% 
increase in surface area excludes the application of a theory valid for a 
homogeneous reaction to the reaction under consideration. 

Avnir and co-workers (see, for example, the summary in ref. 8, and 
references cited therein) have carried out numerous fractal analyses in an 
attempt to characterize a property of an object with a scale (or a yardstick) 
using a power-law scaling relation property 0: scaleD. Although many 
properties such as physisorption monolayer, chemisorption capacity, and 
adsorbate surface reaction rate were found to obey the power law function 
above, with the particle size being the scale, the reaction rates at the solid 
interface could not be related to the surface roughness fractal dimension by 
a simple power law. 

Thus, how is the reaction rate related to the particle size x, if the relation 

reaction rate in a heterogeneous system a xD 

is not valid? As a step in considering this problem, we review the known 
rate functions conventionally used in the field of thermal analysis. The 
functions have been taken from the widely used classification by Sharp et al. 

PI- 

REACTION IN HETEROGENEOUS SYSTEMS 

We describe a heterogeneous reaction in terms of a degree of conversion 
c2 as 

a = v/v, (1) 
where the volume V of the reacted portion is selected as the changing 
property to be monitored during the reaction, and V, is the initial volume of 
the system. Then, the reaction rate can be expressed as 

da/dt = (l/V,) dV/dt (2) 

If we assume that the rate is described as in the homogeneous reaction 

da /dt = k( T)F((r ) (3) 

where 

k(T) = 2 exp( -EIRT) (4) 
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TABLE 1 

Commonly used reaction function forms a 

Symbol Function form F(O) Ref. 

DI cy 

D2 ,ln(l - a)]-’ 1 

Q (1 _ a)“3[(1 - a)-“3 - I]_’ 10 

I& [(l - a)_‘, - 11-l 11 

R* (1 - (Y)“2 12 

R3 
(1 - a)2’3 12 

Fl 
A2 
A3 

il:Z)[--In(1 - a)]‘” 
(1 - cy)[-ln(1 - a)]2’3 

13,14 
13,14 

a In accordance with the classification of Sharp et al. [l]. 

with 2 the pre-exponential factor, E the activation energy, R the gas 
constant, and T the absolute temperature, and that the reaction occurs in a 
very narrow temperature range, we obtain 

daldt a F(Q) (5) 

where the function F(a) depends on the physical and geometric relations at 
the boundary between the product and the initial material. Various types of 
F(a) have been proposed, mostly independently, by many authors. In 
Table 1 the most basic and commonly used ones are listed, in accordance 
with the classification by Sharp et al. [l]. 

Here we assume three simple processes: (1) a surface-controlled 
reaction in which the chemical reaction is the rate-controlling process; (2) a 
diffusion-controlled reaction 
rate-controlling process; (3) 
rate of nucleation formation 
is rate-controlling. 

Surface-controlled reaction 

in which the mass transport of a material is the 
a nucleation-dependent process in which the 
and overlap of the formed and growing nuclei 

We assume that the reaction rate is proportional to the surface area A of 
the reacting boundary 

dVldt = kA (6) 

where k is a constant; with eqn. (2) we obtain 

daldt = k/V& (7) 

If we assume that the morphology of the reacting particle is essentially the 
same during the reaction, the initial volume V, and the unreacted or 
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remaining volume V’ can be written as 

v, = 0,” 

V’ = Cr’D 

where r’ is the fractal size of the unreacted particle. Then, by adopting 
Mandelbrot’s theory of co-dimension [9], the area A of the reaction 
boundary can be expressed by A = C’F’. By simple substitution using 
V = V, - V’ and eqn. (l), we can rewrite eqn. (7) as 

da/dt m (1 - c+~‘)‘~ 

with D a fractal dimension of 2 d D S 3. 

Difusion -controlled reaction 

The rate of diffusion of a substance in a thin boundary layer between the 
initial material and the reacted product corresponds to the reaction rate. 
Here, the reacting volume is assumed to be proportional to the diffused 
amount, expressed by 

dVldt = K dNldt (8) 

where N is the quantity of the diffusing material and K is a constant. 
By assuming a simple one-dimensional diffusion, we obtain d*N/dr* = 0 

according to Fick’s second law; by further assuming the concentration 
gradient along the direction of the diffusion to be constant, we obtain 
dNldr = constant and 

dVldt = K dNldt = -D’KA dNldr (9) 

where D’ is the diffusion constant and A is the cross sectional area of the 
reaction system. 

At any position r from an arbitrary origin in the product layer of a 
D-dimension particle, the diffusion flux per unit time becomes constant 
irrespective of r. Thus, by integration, eqn. (9) becomes 

(10) 

where 1 G D s 3. 
Thus, from eqn. (10) and AN = N - No > 0, when 1 G D < 2 we obtain 

dNldt a AN[ - +D) + ,62=“]-1 (11) 

when D = 2 we obtain 

dN/dt a AN[-ln(r/rO)]-’ (12) 
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and when 2 < D s 3 we obtain 

dN/dt cc AN[T(~-~) - r$2-D)]-1 

By substituting r/r,, = (1 - (Y)“~, we obtain 

D,(l<D<2) da/dt a [-(1 - (Y)(*-~)‘~ + 11-l 

D,(2<DG3) da/dt a [(l - (Y)(*-~)‘~ - 11-l 

DD(D =2) daldt a [-ln(1 - (Y)]-’ 

Nucleation-dependent process 

195 

(13) 

The rate in this process is assumed to be controlled by the nucleation- 
growth mechanism, following the basic concept established by Avrami [13] 
and Erofeyev [14]. Here it is assumed that the rate of forming the germ 
nuclei and the rate of growth thereof are each constant. Hence 

dN/dt = kN,, (14) 
u = K(k’t)” (15) 

where N is the number of nuclei, u is the volume of a nucleus, D is the 
fractal dimension of the direction of growth, and k and k’ are rate constants 
for the formation of nuclei and for the growth of grains, respectively. NO is 
the number of sites suitable for nucleus formation and K is a volume 
conversion factor. 

The total volume V for the nuclei having formed in the initial stage can 
be obtained from eqns. (14) and (15) as 

I 

f 
V = KktD (t - QD(dN/dt) dr 

0 

= l/(D + l)KNokk’DtD+l (16) 

By differentiation and substitution, we obtain from eqn. (16) 

da/dt a (~~‘(~+l) 
(17) 

If the nucleation completes in the initial stage, the total volume V after 
time t becomes 

V = KNkrDtD 

thus 
da/dt a (Y(~-')'~ 

(18) 

If the grains grow large enough to impinge upon one another, the actual 
amount reached cr is related to the theoretical (Y’ by 

(Y’ = -ln(l - cx) 
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Functional forms with non-integer values of D 

Symbol 

D,(D = 1-2; D # 2) 
D,(D = 2-3; D # 2) 

Q 
R&D = 2-3) 
AD(D = 1-3) 

Functional form F(a) 

[-(I _ a)(w+wD + 11-I 
[(I - (y)(-D+wJ - 11-1 

[-ln(1 - a)]-’ 

(1 - a)(D-‘)‘D 
(1 - cy)[-ln(1 - (Y)](~-‘)‘~ 

Thus we obtain 

dcx/dt = (1 - (.y) da’ldt (19) 

If the nucleation proceeds at a constant rate. from eqns. (17) and (19) we 
obtain 

da/dt w (1 - a)[-ln(1 - (Y)]~‘@+‘) 

If nucleation completes at the initial stage of react: io n, from eqns. (18) and 

Fig. 1. Plots of (Y vs. In F(a) corresponding to the F(a) functions in Table 1 according to the 
classification of Sharp et al. [l]. 
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(19) we obtain 

da/dt 0: (1 - a)[-ln(1 - CX)](~-~)‘~ 

where 1 s D s 3. 
Then we can summarize reaction functions with non-integer values of D 

as in Table 2. By simple substitution of D with 1, 2, or 3, the functional 
forms corresponding to those in Table 1 can be readily reproduced, except 
for A, = F, (in Table 1) and D, = D, (in Table l), because D, in Table 1 is 
the Janderian equation, which holds only when many simplifying assump- 
tions are satisfied. 

DISCUSSION 

Figure 1 shows that (Y vs In F(a) plots corresponding to the known F(a) 
functions in Table 1. The generalized reaction functions with non-integer D 
listed in Table 2 are shown in Figs. 2-4. 

Figure 2 shows the (Y vs. In F(a) plot curves for the surface-controlled 

Fig. 2. Plots of (Y vs. In F(u) for the surface-controlled reactions, indicated with symbol R,, 
where D is increased from 2 to 3 in steps of 0.1. Note that the (Y vs. In F(a) plots fall within 
the area defined between the conventional R2 and R, curves. 
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Fig. 3. Plots of (Y vs. In F(cu) for diffusion-controlled reactions indicated by DD,, with 
D = 1.0-1.9 and D = 2.1-3.0 in steps of 0.1. The curve with D = 2 coincides with the D, 
curve in Fig. 1. Note that the curves shift to the upper side of the graph with increasing 
values of D to 1.9, and then shift downward from D = 2.1-3.0 to cover an area defined 
between the conventional D, and D, curves. 

reactions, i.e. those indicated with symbol R,, where D is increased from 2 
to 3 in steps of 0.1. Thus, if a sample undergoes a reaction with its (Y vs. 
In F(a) plot falling within the area defined between the R, and R, curves, 
the reaction mechanism for such a sample may obey a surface-controlled 
reaction. 

Figure 3 gives the a vs. In F(a) plots for diffusion-controlled reactions 
D,. Very distinguished features obtained as a result of introducing a fractal 
concept in the reaction of solids can be observed. Those plots were made 
from D = 1.0 to 1.9, and from D = 2.1 to 3.0 with an interval of 0.1. The 
curve with D = 2 coincides with the D, curve in Fig. 1. It can be seen that 
the curves shift to the upper side of the graph with increasing values of D to 
1.9. These curves with values of D from 1.0 to 1.9 have never been discussed 
as being proper for describing reaction mechanisms before adopting the 
concept of a non-integer dimension. The D, curves with D = 2.1-3.0 cover 
an area defined between the conventional D, and D, curves. 
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Fig. 4. Plots of (Y vs. lnF(cr) for F(a) functions corresponding to A,. The curves fall 
between A, and A, curves in Table 1, except that A, corresponds to the F, curve in the 
conventional description. 

Figure 4 shows the (Y vs. In F(Q) curves for F(a) functions corresponding 
to A,,. The same discussion holds for those curves as for the D, and R, 
curves above, except that A, corresponds to the conventional F, curve. 

We have shown in Parts 1 to 3 [3,5,6] of the present series of papers that 
a mechanical size reduction of a bulk into a powder yields a powder product 
having not only a fractal particle size distribution, but also fractal surfaces. 
To show the close relationship between the size reduction process and the 
formation of fractal surface, we provide a generalized fractal energy law for 
the size reduction of a solid bulk by assuming that the input energy for 
crushing, grinding, etc., is consumed for newly producing fractal surfaces 
[7]. That is, the well-known energy laws for size reduction of solid bulk 
such as Rittinger’s law 

where E is the energy consumed for breakage of a particle having a size x1 
into a product with a size x2, qwhich is the same for the laws hereinafter, 
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and C, is a constant; Bond’s law 

Acta 220 (I 993) 191-201 

where C, is a constant; and Kick’s law 

E=C,logX’ 
x2 

where C, is a constant; can be all obtained by assuming that the power 
input is expressed by 

where D is the fractal dimension, and by putting D = 2, 2.5 and 3, 
respectively. 

We have also shown [3,5,6] that the reactions of powder products as 
observed by thermal analysis are greatly influenced by the fractal particle 
size distribution and thereby the fractal surface, but not in a simple manner 
such that the reaction rate is related to the surface area by a power law. 

The conventional kinetic model functions were derived on physical- 
geometrical assumptions based on a Euclidean geometry. However, 
discrepancies are often encountered between those functions and the 
observed reactions. Accordingly, empirical functions are recognized to be 
more useful for the description of a real process [15]. Our approach is 
different from those. We start from conventional functions but assume that 
a reaction proceeds on a fractal surface or in a fractal topology. The three 
types of model here are still too simple for the real reactions and for those 
involving catalytic reactions, parallel reactions, reversible reactions, etc.; 
however, they may describe the reactions better than those functions based 
on one-, two-, and three-dimensions. 

CONCLUSIONS 

Based on Parts 1 to 3 [3,5,6] of the present series of our reports, we 
conclude that a reaction process of a mechanically ground product is greatly 
affected by the fractal particle size distribution and surface. As support for 
this conclusion, we also show that the empirically or experimentally 
obtained energy laws for grinding processes describe the formation of 
fractal surfaces. We propose here three types of function for describing a 
heterogeneous reaction process instead of the conventional functions. 

Because inorganic samples are used in powder form in thermal analysis, 
it is more natural to assume reactions involving a non-integer dimension 
because it is well established at present that a powder obtained by a 
mechanical size-reduction process is composed of particles having a surface 
defined by fractal dimension. 
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